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A Complete System for Polyps Flagging in Virtual
Colonoscopy

Marcelo Fiori, Pablo Musé, and Guillermo Sapiro

Abstract—Computer tomographic colonography, combined
with computer-aided detection, is a promising emerging tech-
nique for colonic polyp analysis. We present a complete pipeline
for polyp flagging based on a simple segmentation technique
that enhances polyps, a multi-scale candidate polyp delineation,
and new texture and geometric features that consider both the
information in the candidate polyp location and its immediate
surrounding area. The proposed algorithm is tested with ground
truth data, including flat and small polyps which are hard to
detect even with optical colonoscopy, obtaining very promising
results. For polyps greater than 6mm in size we achieve 100%
sensitivity with just 0.8 false positives per study, and for polyps
greater than 3mm in size we achieve 100% sensitivity with 2.2
false positives per study.

Index Terms—Virtual colonoscopy, CT colonography,
computer-aided detection, colonic polyp detection, colon
segmentation, curvature motion, geometric features, texture
features, differential features, classification.

I. INTRODUCTION

COLORECTAL cancer is the second leading cause of
cancer-related deaths in the United States (only surpassed

by lung cancer), and the third cause worldwide [1]. The
early detection of polyps is fundamental, allowing to reduce
mortality rates up to 90% [2]. Nowadays, optical colonoscopy
(OC) is the most used detection method due in part to its
relative high performance. However, this technique is invasive,
very expensive, and still prone to miss polyps (in particular
small or flat ones), making it hard to use in large screening
campaigns.

Computer Tomographic Colonography (CTC), or Virtual
Colonoscopy (VC), is a promising alternative technique that
emerged in the 90’s [3]. It uses volumetric Computed Tomo-
graphic data of the cleansed and air-distended colon. It is less
invasive and less expensive than optical colonoscopy, and as
a consequence, much more suitable for screening campaigns
once its performance is demonstrated. CTC also has the poten-
tial to outperform OC, in particular for small or flat polyps, or
those polyps in regions of the colon where OC has been shown
to perform poorly. In addition, regarding optical colonoscopy,
only around 70% of the colon is explored visually. Incomplete
studies due to obstructing colorectal lesions, colon twists, or
anatomical variations are not rare (5% to 15% [4]), and there
is the additional risk of perforating the colon. In a large study
by Kim et. al [5], where about 3000 patients went through OC

Marcelo Fiori and Pablo Musé are with the Instituto de Ingenierı́a Eléctrica,
Universidad de la República, Uruguay.

Guillermo Sapiro is with the Department of Electrical and Computer
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and another 3000 through VC, seven perforations occurred in
the OC while none were recorded in the VC.

Nevertheless, it takes more than 15 minutes for a trained
radiologist to complete a CTC study, and the performance of
the overall optical colonoscopy is still considered better. In this
regard, Computer-Aided Detection (CAD) algorithms can play
a key role, assisting the expert to both reduce the procedure
time and improve its accuracy.

Colon lesions can be classified according to their size,
measured in diameter, and according to their morphology, into
pedunculated, sessile, or flat. Flat lesions are of special interest
because these are an important source of false negatives in
CTC, and they are around 10 times more likely to contain
high-grade epithelial dysplasia1 [6], [7], [8].

There are numerous discussions regarding the potential risks
of the polyps according to their size. Even though some
authors consider that “small” polyps may not represent risk,
the majority of gastroenterologists disagree [9]. Summers
claims that one of the major challenges in the field is in
increasing sensitivity for smaller polyps [10]. At the same
time, Bond [11] declares that the major disadvantage of VC
is its current low performance for flat lesions.

The goal of the work presented in this paper is to exploit
VC precisely to automatically flag colon regions with high
probability of being polyps, with special attention to results
in challenging small and flat polyps.2 Toward this aim, we
propose a complete pipeline that starts with a novel and simple
segmentation step. We then introduce geometrical and textural
features that take into account not only the candidate polyp
region, but the surrounding area at multiple scales as well.
This way, our proposed CAD algorithm is able to accurately
detect candidate polyps by measuring local variations of these
features. The whole algorithm is completely automatic and
produces state-of-the-art results.

The rest of this paper is organized as follows. In Section
I-A we briefly review prior related work and in Section I-B
we present an overview of the whole proposed pipeline. We
address the colon segmentation problem in Section II and
the feature extraction and classification in Section III. In
Section IV we describe the evaluation method and results.
The discussion is presented in Section V and we conclude
in Section VI.

1An abnormality of development in cells that may become cancer in situ
or invasive cancer.

2This paper extends our previous conference publication [12].
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A. Virtual Colonoscopy CAD Review

Automatic polyp detection is a very challenging problem,
not only because the polyps can have different shapes and
sizes, but also because they can be located in very different
surroundings. Most of the previous work on CAD of colonic
polyps is based on geometric features, some using additional
CT image density information, but none of them takes into
account the (geometric and texture) information of the tissues
surrounding the polyp. This is a crucial issue since it is well
known that the tissue properties of the colon may vary with
location. This local and adaptive differential analysis is part
of the contributions of this work.

Early work on CAD methods by Vining et al., [13], is
based on the detection of abnormal wall thickness. Summers
et al., [14], detect polyps greater than 10mm by computing
mean curvatures and sphericity ratio, and present results over
a large screening patient population. Yoshida et al., [15], use
the shape index (defined later in this paper) and curvedness as
geometric features, applying fuzzy clustering and then using
directional gradient concentration to reduce false positives.
Paik et al., [16], also use geometrical features, computing
the Surface Normal Overlap (SNO) instead of calculating
curvatures. Wang et al., [17], compute a global curvature,
extract an ellipsoid, and analyze morphological and texture
features on this ellipsoid. They reach 100% sensitivity with a
relative low false positives (FP) rate, using heuristic thresholds
and texture features. Hong et al., [18], map the 3D surface to
a rectangle, use 2D clustering, and reduce false positives with
shape and texture features. Sundaram et al., [19], compute
curvatures via the Smoothed Shape Operators method, and
use principal curvatures and Gaussian curvatures to detect
polyps. Götkürk et al., [20], propose a technique to reduce the
false positives based on features calculated from three random
orthogonal sections, and then classifying with SVM. All these
described techniques based on local geometric computations
suffer from a high dependence on the regularity of the polyp
shape itself, ignoring how pronounced it is with respect to the
surrounding area. Using geometry alone is also very sensitive
to the colon segmentation.

More recently, van Wijk et al. [21] proposed a PDE motion
that flattens only the polyp-like shapes, and then they consider
the difference between the original and the processed images.
The main drawback of this approach is that the resulting
flattened polyps look like a flat lesion, therefore the algorithm
does not detect flat lesions. Suzuki et al. [22] use artificial
neural networks to reduce the false positive number of the
previous algorithm by Yoshida et al. described above [15].
Although there were no polyps submerged in fluid in the
database, the results are very promising, achieving 96.4%
sensitivity (over 28 polyps) with 1.1 FP per case. However,
the sensitivity is not perfect, an evaluation with small lesions
and polyps submerged in liquid should be performed, and the
FP number can be further improved. Konukoglu et al. [23]
introduced a preprocessing stage that enhances the polyps via
a PDE evolution based on the heat equation, and showed how it
improves the CAD performance. Proprietary algorithms, [24],
[25], have been reported as well, but with no better results

than the methods mentioned above. Although the comparison
of the experimental results is delicate since different databases
were used, all these approaches can be improved as here
demonstrated, either detecting a more general class of lesions
or directly on the classification performance.

The results reported by the algorithms presented above were
reported on using databases containing polyps greater than
6mm in size (or greater than 10mm in some databases).
To the best of our knowledge, no algorithm reported in the
literature can detect small polyps properly. On the other hand,
for polyps bigger than 6mm in size, no algorithm can achieve
100% sensitivity with less than one false positive per study.
Therefore, it is important to keep improving these techniques.

B. Overview of the Proposed System

The main goal we are addressing in this work is to
highlight/flag all the candidate polyps, so the radiologist can
quickly check them. It is crucial to minimize the false nega-
tives, keeping a reasonable false positives number. We achieve
this by a four-steps process, Figure 1, which is completely
automatic and constitutes the entire end-to-end algorithm, from
data to candidate polyps flagging.

In the first step, the colon segmentation, the input is the
CT volume data, and the output is a 3D mesh representing
the colon surface. In the second step, from the segmented
mesh we perform a multi-scale search of candidates in order to
capture the appropriate polyp size, obtaining a set of candidate
patches. The CT volume data, the segmented colon surface,
and the candidate patches are the input to the third step, where
we compute geometrical and textural features. The final step
consists of a machine learning algorithm that classifies polyps
and non-polyps patches from the computed features. In the
following sections we describe each of these steps in detail.

II. COLON SEGMENTATION

The segmentation of the colon surface, which is critical
in particular to compute geometric features, is divided into
two parts: a pre-processing stage for dealing with the air-
liquid composition of the colon volume, and a second stage
that consists on smoothing the pre-processed image and ob-
taining the final colon surface by thresholding the smoothed
volume. The overall procedure here presented is very simple
and computationally efficient, leading to the state-of-the-art
classification results later reported.

A. Classifying CT regions

One of the strongest difficulties concerning the segmentation
of the colon from abdominal volumes in CT is the presence
of liquid and its interfaces with air and tissue. Figure 2
shows a CT slice and its pixel values over the highlighted
vertical segment. At first sight there are three clearly distin-
guishable classes: the lowest gray levels correspond to air,
the highest levels correspond to liquid, and the middle gray
values correspond to tissue. Nevertheless, there are around 6
interface voxels between air and liquid whose gray values, due
to continuity, lie within the normal tissue range. Therefore,
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Fig. 1. Basic pipeline of the proposed polyp flagging system.

a naı̈ve approach based on gray values only, ignoring the
physical nature of the tissue and its environment, is not suitable
for proper tissue classification and segmentation.

Fig. 2. CT slice and typical values for air, liquid and normal tissue.

The proposed approach addressing this issue consist on
generating a probability map P, that is, a 3D image with
the same size of the CT volume (around 512× 512× 400 for
our data), whose values are the (estimated) probability of the
voxel of being inside the colon. We will then process this map
to estimate the interior colon wall.

We obtain P by computing for each voxel the three proba-
bilities of belonging to each of the three classes of interest
(namely, air, liquid and interface, the union of these three
classes forms the inside of the colon), and then taking P as
the maximum of these three probabilities.

Since the gray value distributions of air (class w1) and
liquid (class w2) are very distinguishable and stable among the
different studies, they can be empirically learned by manually
segmenting these two classes in a given CT study, and then
constructing the probability distribution functions p(x|w1) and
p(x|w2) by standard kernel density estimation [26]. From
this, the distributions p(w1|x) and p(w2|x) can be computed,
assuming uniform class priors. The air and liquid probabilities
for a voxel in the testing CT are then easily computed by
simply evaluating these estimated distributions on the gray
value of the CT voxel.

The challenging component of computing P is the compu-
tation of the interface probability. Here we take advantage of
the physics of the problem, and in particular of the gravity and
the position of the patient: the person is laid horizontally so
the interface between the liquid and the air is a plane parallel
to the floor. The voxels situated on the interface then have a
large gradient in the z (vertical) direction, since the values of

air and liquid are on opposite ends. However, the transition is
about 6 voxels wide for the standard data resolution used in
this work, and the computations should be done taking this into
account. Additionally, if a given voxel belongs to the interface
layer, it is expected that at least half of the neighbor voxels at
the same horizontal plane also belong to the interface layer.

The implementation of these criteria is as follows. A cubic
neighborhood around each voxel x is considered, and for
each one of the “columns” that result of fixing the x and
y coordinates, the probabilities of the upper voxels of being
air and the lower voxels of being liquid are accumulated. If
the tested voxel belongs indeed to the interface layer, then all
these air and liquid probabilities will be high. The interface
probability is then an increasing function of this accumulated
measures. The algorithm in Figure 3 provides a pseudo-code
that represents this procedure.

for each voxel (x,y,z) do
sum=0;
for i=−1 to 1 do

for j=−1 to 1 do
for k=1 to 2 do

sum += p(w1|(x+i,y+j,z+k));
sum += p(w2|(x+i,y+j,z-k));

end
end

end
p(w3|(x,y,z)) = sum/18;

end

Fig. 3. Interface probability computation

After the computation of the probability map some spurious
(isolated) voxels may have high probability of being liquid
(bones for example, or simply noise), and we know that the
colon volume should be connected, so we clean the probabil-
ity map by keeping the connected component3 containing a
chosen voxel used as seed. The seed is automatically detected
choosing the voxel with greater value of Pi, since these high
probabilities occur only at the true interface between air and

3Actually, since the probability map is not binary, a (conservative) threshold
of 0.6 is considered to separate the connected components.
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liquid. Alternatively, the seed could also be provided by the
user for a more interactive system if desired.

Figure 4 shows a slice of the original volume data and the
same slice of the computed probability map P.

Fig. 4. CT slice and its corresponding slice on the probability map.

B. Smoothing and colon surface computation

In order to eliminate noise and to obtain a smoother colon
surface after the segmentation, the 3D probability map P
should be first smoothed.

One of the fundamental aspects that we look for in this
smoothing process is the preservation of the shape of the
polyps, while obtaining a smooth enough surface to reliably
compute geometric features such as curvature. Of course, the
ultimate goal is to derive a method to process the surface
that simplifies and improves the polyp/non-polyp classification
system.

At this point we have the previously computed probability
map P, which will be processed by a Partial Differential
Equation (PDE) of the form

∂u(x, t)

∂t
= β|∇u| , u(x, 0) = P(x) , (1)

where P is the initial condition. After making a few iterations
of this PDE evolution, an iso-level surface of the resulting
3D image u(x, T ) will be extracted, and that will be the
resulting colon surface. Since we are interested in a certain
iso-level surface of the volume, it will be useful to point out
the relation that states how the iso-levels evolve when the 3D
image evolves according to (1). Namely, the basic equation
of the Level Set Method [27] states that if u(x, t) evolves
according to (1), then its iso-levels (level sets) satisfy

∂S
∂t

= β ~N , (2)

where S is any iso-level surface and ~N its unit normal.
Therefore, in what follows we study surface motions, in

particular when the deformation term β is a function of the
principal curvatures κmax and κmin. In the actual implementa-
tion, this term (and therefore the principal curvatures) have to
be computed from the function u(x, t), a standard procedure in
the implementation of curvature-based surface motions [28].
We first review the classical motions by curvature and then
propose some variations used as part of our developed pipeline.

The classical mean curvature motion
∂S
∂t

= H ~N

has problems regarding topological changes, consider for
example the deformation of a dumbbell [29], which is a surface
homeomorphic to a sphere that evolves into two separate
topological spheres. Nevertheless, making only a few iterations
this problem does not affect our surface. With very few
iterations a very smooth surface is obtained, but the polyps are
flattened fast too, as it can be observed in Figure 5. However,
if used carefully, it is a very good alternative to more standard
Gaussian filtering.

Fig. 5. Mean Curvature Motion: original surface and the result after 2, 8,
15, 30 and 50 iterations. Note how both the surface (as desired) and potential
polyps (undesired) are smoothed and flattened.

The motion by Gaussian curvature K on the other hand, has
several problems with surfaces containing nonconvex parts,
which is our case. Indeed, only a few iterations are needed for
the evolving surface to explode (decompose into disconnected
parts).

A suitable version of the motion by Gaussian curvature,
namely the affine motion

∂S
∂t

= (K+)1/4 ~N where K+ = max(K, 0) ,

has a better behavior in general, in terms of topological
preservation. However, when used with only a few iterations,
the results are comparable with the mean curvature.

The last classical motion here discussed is the motion by
minimal curvature κmin. Caselles [30] showed with exper-
imental results that this evolution is the only among those
just described that preserves the topology of a bent dumbbell
(homeomorphic to a sphere). In our particular application, this
evolution yields very good results in terms of both surface
smoothing and polyp enhancement.

In what follows we try to take advantage of the known
properties of our shapes of interest to propose motions that
behave better in our application. Inspired in the exponent 1/4
of the affine motions in dimension 3, and the best (in terms
of polyp-shape preservation) of the motions presented above,
we first tested the evolution that obeys the equation

∂S
∂t

= κ
1/4
min

~N .

It turns out that the motion governed by this equation yields
better results than the ones presented. Figure 6 shows the result
after a few iterations, and Figure 7 evidences the difference
with a comparative image: the result of the motion by κmin

is in gray while the result of the motion by κ1/4min is shown in
orange. It can be seen that the polyp surface in the latter is
above the polyp surface of the former, and the surrounding
zone is the other way around, showing that the evolution
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Fig. 6. Evolution by κ1/4min: original surface and the result after 2, 8, 15,
30 and 50 iterations.

Fig. 7. Comparison between evolutions. Motion by kmin in gray vs. motion
by k1/4min in orange.

by κ
1/4
min better enhances the polyp when compared with the

motion by minimal curvature.
In order to further improve the smoothing process, we will

characterize the polyps shape and distinguish even more the
evolution for those zones. Towards this aim, we present a
surface property that will be used in the feature extraction
stage as well.

A measure of the local shape of a surface is the so-called
shape index [31],

SI := − 2

π
arctan

(
κmax + κmin

κmax − κmin

)
,

where κmax and κmin are the principal curvatures. A com-
plementary measure called curvedness C, is defined as

R :=

√
κ2max + κ2min

2
, C :=

2

π
lnR .

The (κmax, κmin) plane is then transformed into the
(SI,C) plane. While the value of SI is scale-invariant and
measures the local shape of the surface, the value of C
indicates how pronounced it is. Figure 8 shows different
shapes and their corresponding shape index. Due to the chosen
orientation, shape index values close to −1 (protrusions) are
of special interest for polyp detection.

Back to the PDE motion, the next step is to include this
information concerning the shape of the surface in order to
make potential polyps evolve differently than the rest of the
colon surface. More precisely, we modify the best motion so
far (κ1/4min), in such a way that the resulting motion further
enhances the potential polyps. In order to achieve this, it is
needed to characterize the potentially polyp points and modify
the deformation function according to that. The shape index
characterization is very precise, but the computation of the

Fig. 8. Some shapes and their corresponding shape index values.

shape index of the level surface from the embedding function
u is delicate. Indeed, the typical scheme is to compute H and
K by direct formulae and then the principal curvatures (which
are necessary to compute the shape index) are obtained by
solving a second order equation, leading to

κmax,min = H±
√
H2 −K ,

so very little errors in the estimation of H and K may become
important errors in the estimation of the principal curvatures.
In order to overcome this difficulty we directly compute the
principal curvatures [32]. Let Pv be the operator that represents
the projection onto the orthogonal complement of v, that is,
Pv = I − vvT

|v|2 , let Hu be the Hessian matrix of the function
u, and consider the symmetric matrix

J =
1

|∇u|
P∇uHuP∇u .

The orthogonal complement of ∇u is the tangent plane, where
the second fundamental form is defined. Is is easy to see
that ∇u is an eigenvector of J corresponding to the zero
eigenvalue, due to the projection. It can be shown that the
other two eigenvalues are the principal curvatures and the
corresponding eigenvectors are the principal directions.

This computation scheme leads to much more accurate
estimation of the curvatures, and therefore better estimations
of the shape index. Both techniques (the direct formulae
and this latter one) yield very similar results for the mean
curvature H. The important difference is on the computation
of the Gaussian curvature K, where the latter technique leads
to much more stable results. When the absolute value of
the Gaussian curvature K is small, sometimes the different
estimations have different signs, which leads to very significant
errors in the shape index estimation, since SI is very sensitive
to the signs.

We now define a function that acts as a multiplying factor of
the term κ

1/4
min, making the surface evolve slower at the points

of interest. One option is to choose this function to depend
on the shape index only, assigning low values to shape index
near −1, and values close to unity to other points. A smooth
function g(SI) verifying these constraints is shown in Figure
9.
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Fig. 9. Function g(SI) = 1
π
arctan ((SI − 0.75) · 10) + 1

2
, multiplying

factor for PDE curvature evolution.

The final motion then becomes
∂S
∂t

= g(SI)κ
1/4
min

~N .

This proposed evolution keeps all the advantages of the
motion by κ

1/4
min and in addition, the polyps are flattened

slower, so at the end the obtained surface is smooth and the
polyps are still outstanding.

At this point, after choosing the appropriate diffusion,
we have a smoothed probability map u(x, T ) indicating the
volume inside of the colon. We then extract the surface of
the colon, using the marching cubes algorithm [33] to obtain
the iso-value surface of level α ∈ [0, 1]. The choice of the
value α can be made by maximizing some criteria, in order to
obtain the best surface in a given sense [34]. This optimization-
oriented method was tested, but in our particular application
all the consistent surfaces are very close to each other, and all
of them are reasonable segmentations of the colon. Therefore,
the computational effort is not justified and we simply use a
fixed value, extracting the iso-level surface for α = 0.7. Note
that this choice can be safely made once for all, since all the
studies are performed under very similar conditions. The result
of this stage is then a triangulated surface S representing the
colon wall.

III. FEATURE EXTRACTION

For each case study, we consider as input both the raw CT
images and the segmentation of the colon volume as obtained
following the procedure described in the previous section. The
first stage of the proposed polyps flagging algorithm consists
in detecting surface patches that are candidates of being
polyps. The complete set of connected points that constitutes
the candidate patch is found by progressively growing the
patch and keeping the one that maximizes the geometric
dissimilarity with the surrounding area, in the sense of the
features presented below (the starting point for this growth is
also detailed below). The detection system is therefore based
on differential (non-absolute) features, thereby better adapting
to intrinsic variabilities both of the colon region and of the
potential polyps, as further explained next.

All the polyp detection methods reported in the literature
try to detect or classify the polyps from properties defined
only within the candidate region, without considering the data

surrounding the region. However, it is important to analyze
the context in which the candidate patch is located, not only
because different sections of the colon present different charac-
teristics, but also because polyps can be situated over different
structures such as folds or plain colonic wall. A good feature
including the shape of the neighborhood for example, can
help in the discrimination between irregular folds and polyps
over folds. In addition, looking for significant differences in
the gray level imitates the human-based inspection, which
highlights zones that contrast with their vicinity.

In this regard, most of the features described in this section
take into account the local information of the area surrounding
the candidate patch. Polyps (actually all the candidate patches)
are then characterized not only by their intrinsic geometry and
structure, but also by their relationship with the surrounding
area. This makes the features more robust to the particular
local phenomena, in a context where the natural variations of
the properties of the colon tissue impact the measures and
make absolutes thresholds or decision rules impractical.

A. Candidate detection and geometrical features

The starting point for the geometric features described in
this section is the segmented surface S. Let us consider the
shape index as a function SI : S → [−1, 1], and recall that the
polyps have shape index values close to −1. Therefore, it is
expected that a region (patch) of the surface that corresponds
to a polyp contains at least one local minimum of the shape
index function. The detection of the candidate patches starts
from this observation, and follows a multi-scale search. For
each local minimum x0 ∈ S of the function SI , several level
sets of SI (P1 . . .Pn) around x0 are tested, and the level
set Pi that maximizes the distances between the histograms
described below, is the final considered candidate patch, which
we simply denote by P . A total of n = 7 level sets are tested,
corresponding to the shape index values from −0.8 to −0.5
with a −0.05 step. The following description is given for the
final chosen patch P , but the ring and histogram computations
are made for all the level sets Pi in order to select the most
appropriate of them (the most appropriate scale).

Given a candidate patch P , a ring R around P is computed,
in order to consider geometrical measurements with respect
to the area surrounding the patch. The ring is calculated
by dilating the patch P a certain geodesic distance, such
that the areas of P and R are equal. The geodesic distance
computation is performed using the algorithm in [35]. Figure
10 shows a candidate patch (actually a true polyp), and its
corresponding ring.

Histograms of the shape index values are then computed
for the patch P and the ring R, and two different distances
between them are computed: the L1 distance and the symmet-
ric Kullback-Leibler divergence. If the patch corresponds to a
polyp-like shape then the values of the histogram P will be
concentrated around the −1 extrema, on the other hand, the
histogram R will be inclined to the other extreme in case of a
polyp on a normal colon wall (concave), or with tendency to
values near −0.5 if the polyp is on a fold. These two features
give a measure of the geometric local variation of the candidate



7

patch P . We assume that there are no other polyps in R or
that they do not significantly affect the statistics on the ring.

Fig. 10. Ring (in blue) surrounding a candidate polyp (in orange).

Although these two are the most discriminative features, we
also consider the following additional ones since they still help
to discriminate some typical false positives:
• The mean value of the shape index over the patch P ,

which describes the shape of the selected patch.
• The area of the patch, since we want to detect polyps in

a certain range of size.
• The growth rate of the areas at the multi-size stage,

meaning the ratio between the area of the chosen patch
P = Pi and the area of the immediately smaller tested
patch Pi−1; this feature measures how fast the shape of
the patch is changing, in a context where it is difficult to
quantize the variation of the shape.

• And finally the shape factor

SF =
4π ·Area
Perimeter2

,

which measures the shape of the patch border, how
efficiently the perimeter is used in order to gain area,4 and
it favors circle-like patches (like the polyp patch in Figure
10), avoiding elongated patches (like the false positives
in folds).

We then end-up with a total of 6 geometric features for
detecting candidate polyps, namely: L1 and Kullback-Leibler
distance between shape index histograms of patches and
corresponding rings, the mean shape index over P , the area
of the candidate patch, the growth rate of the areas and the
shape factor.

B. Texture features

Due to the differences in biological activity of polyp cells,
the gray-level of the CT image and its texture can be very
helpful for detecting polyps. This is in particular useful for flat
or small polyps, where the geometric information is limited.
Some work has been done on the inclusion of texture features
(inside the candidate polyps only), in order to reduce false
positives [17]. According to the reported results, there is a
lot of room for improvement in texture features. We propose

4The maximum value for the shape factor is 1 and its achieved only by the
circle.

both the use of new texture features and the inclusion of the
information on the candidate’s surrounding area.

First, for each polyp candidate P ⊂ S , a volume V1 is
calculated, containing the patch P and a portion of the inner
tissue next to the patch. A second volume V2, surrounding V1
is calculated, containing normal tissue, in order to compare it
with the polyp candidate tissue.

The features chosen are a subset of the classical
Haralick texture features [36], namely, entropy, energy,
contrast sumMean, and homogeneity. Seven co-
occurrence matrices (considering seven directions in
R3, (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1) and
(1, 1, 1)) are calculated with the voxels of V1, and all the five
features are averaged over the seven directions. The analogous
computation is made for V2, and the differences between
the two volumes, for each texture feature, is considered.
Additionally, the mean gray levels of the voxels in both
volumes is computed, and their difference is considered as
a feature. In this way, six texture features are considered.
This approach for computing the texture features, measuring
differences with the surrounding area, leads to better
discrimination than the features computed just for V1, as
demonstrated next.

IV. CLASSIFICATION AND RESULTS

A total of 31 cases of the WRAMC database were used to
test the proposed CAD algorithm,5 with 49 polyps detected by
optical colonoscopy, including two flat polyps. Among these
49 polyps, 34 are greater than 6mm in size, and the other 15
are between 3mm and 6mm in size.

After the candidates detection with the multi-scale approach,
the number of true polyps was much lower than the number
of non-polyps patches, a relation on the order of 500:1,
which is a significant problem for the learning stage of the
classifier. Three techniques were considered to overcome this
shortcoming.

The approach of Domingos [37] is called MetaCost, and
it consists of combining several instances of the classifier
instead of stratification (modify the proportion of classes in
the training data according to the costs). This method does
not work with “stable” classifiers (those that produce similar
models with slightly different training sets) like SVM or Naive
Bayes.

In the work by Elkan [38] the class imbalance problem
is tackled and a scheme called Cost Sensitive Learning is
proposed. Unlike the MetaCost approach, it tries to balance the
classes before the learning stage. The author proves a theorem
giving a formula for how to rebalance the data, given the target
threshold probability. The implementation used (from Weka)
reweights the training instances according to the cost matrix,
or predicts the class with minimum expected misclassification
cost.

Finally, the Synthetic Minority Over-sampling TEchnique
(SMOTE) is a method to generate artificial instances of the
minority class, in order to get a balanced data to learn from.

5Data provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Center,
Walter Reed Army Medical Center.
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The new artificial instances are created as a linear combination
of the existing instances of the minority class. Therefore, there
is an underlying assumption that the optimal partition in the
feature space gives convex sets, which may not be the case in
several applications.

We tested all these options and the best results were
obtained using Cost Sensitive Learning, as expected from the
comments above.

The numerical results listed below were obtained by classi-
fying with SVM using Cost Sensitive Learning, after normal-
izing the data; Naı̈ve Bayes performed similarly.

Using the leave-one-out strategy (i.e., testing with one case
and training with the rest) all the 49 polyps were detected
with an average of 2.2 FP per patient case (1.3 FP per polyp).
These values are comparable with the state-of-the-art results
[17], [22], but include very small and therefore challenging
polyps in our database. A more precise comparison of results
is not necessarily useful, since in general each work considers
its own database.

On the other hand, when testing our CAD pipeline with the
polyps greater than 6mm in size (34 in total, including two
flat polyps), which is the typical framework in the VC CAD
literature, the results are further improved, a 100% sensitivity
is achieved with just 0.8 FPs per study.

Texture features
Absolute Differential

Sensitivity 96% 100%
FP per case 3.1 2.2

TABLE I
COMPARISON OF ABSOLUTE AND DIFFERENTIAL TEXTURE FEATURES,

WITH POLYPS GREATER THAN 3mm IN SIZE.

Polyp sizes
> 3mm > 6mm

Sensitivity 100% 100%
FP per case 2.2 0.8

TABLE II
COMPARISON OF PERFORMANCE BY POLYP SIZE.

Table I shows the comparison between absolute and dif-
ferential texture features. The classification was performed
using all the geometric features and either the absolute texture
features (computed just for V1), or the differential texture
features, using the standard leave-one-out strategy. The results
show that, when combined with the differential geometric
features, differential texture features are significantly more
discriminative than the absolute ones. Table II compares the
classification results according to the polyps size. Again, the
work with such small, as well as flat polyps, is unique to the
framework here presented; see next.

V. DISCUSSION

A. Small polyps, big polyps, flat lesions

It is clear that both the small polyps and flat lesions are
much more difficult to detect than the other polyps. What is
not clear is if the same kind of algorithm and features are
suitable for detecting all the range of polyp types and sizes. We

showed that the proposed combination of features, although it
may not be optimal for every specific type of lesion, is able
to correctly detect all of them.

All the stages in the pipeline, specially the segmentation and
the features, contribute to the good classification results for
the whole database. However, it would be interesting to study
which pre-processing techniques and features are better for
each type and size of polyps, and eventually propose different
CAD systems for each class of polyp. Nevertheless, the 100%
sensitivity together with the 2.2 FP rate for polyps greater than
3mm in size is as remarkable as the 0.8 FP rate for polyps
beyond 6mm in size.

B. Geometric and texture importance

Although the geometrical features are the most discrimi-
native ones, the texture ones still play a fundamental role in
the classification. Adding the texture features to the geometric
ones, the sensitivity reaches 100%, and at the same time the
false positives rate decreases by 30%.

Figure 11 shows a detected polyp, where the geometry is
crucial, because the gray-level does not present considerable
local variations. This is specially true in polyps located over
tagged material. On the other hand, in the flat polyp of
Figure 12, the geometry is weakly discriminative (although
the measure considering the ring enhances the detectability),
and the texture features lead to a correct classification.

Texture information is very important also because it is
more robust to segmentation errors, as the texture features
are computed integrating from the volumetric data itself (once
the local volumes have been considered). Moreover, the dif-
ferential texture features (the differences between V1 and V2),
outperform the absolute texture features (just computed in V1),
as shown in Table I.

Fig. 11. Polyp with no texture information.

Fig. 12. Polyp with texture information, but weak geometric information.
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C. Qualitative analysis of false positives

In addition to the number of false positives, it is very
important to study how these FP patches look like, since some
of them can be quickly ruled out by the expert and some can
be avoided by improving some aspects of the segmentation
step.

About half of the false positives are quite reasonable, in the
sense that they are (usually small) sections of the colon that are
polyp-like shaped, Figure 13, specially taking into account that
we designed the system to also detect small and flat polyps. On
the other hand, about 20% of the FPs were in fold sections
of the wall, Figure 13, or parts of the insufflation tube. All
these patches are easily ruled out by inspection. Another 20%
of the FPs were caused by segmentation errors, this number
significantly reduced thanks to the texture features as discussed
above.

Fig. 13. False positives: fold and patch similar to polyp.

VI. CONCLUSION

We introduced a complete pipeline for a Computer Aided
Detection algorithm that flags candidate polyp regions. The
segmentation stage is very simple and fast, and its main
novelty is the smoothing PDE which enhances the polyps,
leading to a better detection. In addition to the incorporation
of the Haralick texture features, the main novelties of the
classification stage are in the consideration of the surrounding
area for each candidate polyp (we compute differential features
instead of absolute ones), and the strategy for testing regions
of multiple sizes. Differential features are significantly more
discriminative than the absolute ones, as they emphasize local
deviations of the geometry and texture over the colon. Testing
regions of different sizes allows to precisely delineate polyps.
The obtained quantitative results are very promising, detecting
100% of the true-polyps, including flat and small ones, with
a low rate of false positives. Additional improvement of the
segmentation and, in collaborations with radiologists, finding
features that are tailored to polyp-like geometries, can further
improve these results.

ACKNOWLEDGMENTS

Work supported in part by NSF, NGA, ARO, AFOSR and
ANII-Uruguay. We thank Sergio Aguirre from Echopixel for
important feedback regarding VC.

REFERENCES

[1] World Health Organization. (2011) Cancer. [Online]. Available:
http://www.who.int/mediacentre/factsheets/fs297

[2] American Cancer Society. (2010) Colorectal can-
cer facts & figures 2008-2010. [Online]. Available:
http://www.cancer.org/Research/CancerFactsFigures

[3] D. Vining, D. Gelfand, R. Bechtold, E. Scharling, E. Grishaw, and
R. Shifrin, “Technical feasibility of colon imaging with helical CT and
virtual reality,” Am J Roentgenol, vol. 162, no. Suppl, 1994.

[4] A. Blachar, M. Graif, A. Kessler, and J. Sosna, “State-of-the-art CT
colonography: Update on technique and performance,” Current Colorec-
tal Cancer Reports, vol. 3, no. 1, pp. 49–54, May 2007.

[5] D. Kim, P. Pickhardt, A. Taylor, and W. Leung, “CT colonography versus
colonoscopy for the detection of advanced neoplasia,” New England
Journal of Medicine, vol. 358, no. 1, p. 89; author reply 90, Jan. 2007.

[6] J. L. Fidler, C. D. Johnson, R. L. MacCarty, T. J. Welch, A. K. Hara,
and W. S. Harmsen, “Detection of flat lesions in the colon with CT
colonography,” Abdom Imaging, vol. 27, no. 3, pp. 292–300, 2002.

[7] J. Fidler and C. Johnson, “Flat polyps of the colon: accuracy of detection
by CT colonography and histologic significance,” Abdom Imaging,
vol. 34, no. 2, pp. 157–71, 2009.

[8] R. A. Wolber and D. A. Owen, “Flat adenomas of the colon,” Hum
Pathol, vol. 22, no. 1, pp. 70–4, 1991.

[9] A. J. Aschoff, A. S. Ernst, H.-J. Brambs, and M. S. Juchems, “CT
colonography: an update.” European Radiology, vol. 18, no. 3, pp. 429–
37, Mar. 2008.

[10] R. Summers, “CT colonography computer-aided detection: Effect on
radiologist observers,” in MICCAI, 2010.

[11] J. H. Bond, “Colorectal cancer screening: the potential role of virtual
colonoscopy,” Journal of Gastroenterology, pp. 92–96, 2002.
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[20] S. B. Götkürk, C. Tomasi, B. Acar, C. F. Beaulieu, D. S. Paik, R. B.
Jeffrey, J. Yee, and S. Napel, “A statistical 3-D pattern processing
method for computer-aided detection of polyps in CT colonography,”
IEEE Trans Med Imaging, vol. 20, no. 12, pp. 1251–60, 2001.

[21] C. van Wijk, V. F. van Ravesteijn, F. M. Vos, and L. J. van Vliet,
“Detection and segmentation of colonic polyps on implicit isosurfaces
by second principal curvature flow,” IEEE Trans Med Imaging, vol. 29,
no. 3, pp. 688–698, 2010.

[22] K. Suzuki, H. Yoshida, J. Nappi, S. G. Armato, and A. H. Dachman,
“Mixture of expert 3D massive-training ANNs for reduction of multiple
types of false positives in CAD for detection of polyps in CT colonog-
raphy,” Medical Physics, vol. 35, no. 2, p. 694, 2008.

[23] E. Konukoglu, B. Acar, D. S. Paik, C. F. Beaulieu, J. Rosenberg, and
S. Napel, “Polyp enhancing level set evolution of colon wall: method
and pilot study.” IEEE Trans Med Imaging, vol. 26, no. 12, pp. 1649–56,
Dec. 2007.



10

[24] L. Bogoni, P. Cathier, M. Dundar, A. Jerebko, S. Lakare, J. Liang,
S. Periaswamy, M. E. Baker, and M. Macari, “Computer-aided detection
(CAD) for CT colonography: A tool to address a growing need,” Br J
Radiol, vol. 78, no. suppl 1, pp. S57–62, 2005.

[25] S. A. Taylor, S. Halligan, D. Burling, M. E. Roddie, L. Honeyfield,
J. McQuillan, H. Amin, and J. Dehmeshki, “Computer-assisted reader
software versus expert reviewers for polyp detection on CT colonogra-
phy,” Am. J. Roentgenol., vol. 186, no. 3, pp. 696–702, 2006.

[26] M. P. Wand and M. C. Jones, Kernel Smoothing (Monographs on
Statistics & Applied Probability). Chapman and Hall/CRC, Dec. 1994.

[27] S. Osher and J. Sethian, “Fronts propagating with curvature- dependent
speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of
Computational Physics, vol. 79, pp. 12–49, 1988.

[28] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, Oct. 2002.

[29] J. Sethian, “A review of recent numerical algorithms for hypersurfaces
moving with curvature-dependent speed,” Journal of Differential Geom-
etry, vol. 31, pp. 131–161, 1989.

[30] V. Caselles and C. Sbert, “What is the best causal scale space for three-
dimensional images?” SIAM Journal on Applied Mathematics, vol. 56,
no. 4, pp. 1199–1246, 1996.

[31] J. J. Koenderink, Solid Shape. Cambridge, USA: MIT Press, 1990.
[32] O. Monga, S. Benayoun, and O. Faugeras, “From partial derivatives

of 3-D density images to ridge lines,” in Proceedings IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 1992,
pp. 354–359.

[33] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” in SIGGRAPH ’87: Proceedings
of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. New York, NY, USA: ACM, 1987, pp. 163–169.

[34] E. Meinhardt, E. Zacur, A. F. Frangi, and V. Caselles, “3D edge detection
by selection of level surface patches,” Journal of Mathematical Imaging
and Vision, vol. 34, no. 1, pp. 1–16, Oct. 2008.

[35] R. Kimmel and J. Sethian, “Computing geodesic paths on manifolds,”
in Proc. Natl. Acad. Sci. USA, 1998, pp. 8431–8435.

[36] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Trans Systems, Man and Cybernetics, vol. 3,
no. 6, pp. 610–621, 1973.

[37] P. Domingos, “MetaCost: A general method for making classifiers cost-
sensitive,” in Proceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, 1999, pp. 155–164.

[38] C. Elkan, “The foundations of cost-sensitive learning,” in In Proceedings
of the Seventeenth International Joint Conference on Artificial Intelli-
gence, 2001, pp. 973–978.


